B'SYS

B'SYS GmbH
CHO Nav1.5 Duo Cell Line
Specification Sheet
© B'SYS GmbH

TABLE OF CONTENTS

1 BACKGROUND 3
1.1 The cardiac INa is encoded by Nav 1.5 3
1.2 The Long OT Syndrome 3. 3
1.3 B'SYS' CHO NAv1.5 DUO CELLS 3
2 PRODUCT SHIPMENT 4
$2.1 \quad$ Product Format 4
2.2 MYCOPLASMA CERTIFICATE 4
3 VALIDATION OF CHO NAV1.5-DUO CELLS 5
3.1 Manual Patch-Clamp 5
3.2 AUTOMATED PATCH-CLAMP 6
4 CELL CULTURE CONDITIONS 10
4.1 General 10
4.2 Recommended Complete Medium 10
4.3 ANTIBIOTICS 10
4.4 Thawing Cells 10
4.5 Spliting Cells. 10
4.6 Freezing Medium 11
4.7 Freezing Cells 11
5 NAv1.5 SEQUENCE 12
5.1 Human Nav 1.5 Accession Number NM_000335 12
6 CONTACT INFORMATION. 15
6.1 CONTACT Address for TECHNICAL Support \& Ordering Information. 15

1 BACKGROUND

1.1 The cardiac INa is encoded by Nav 1.5

Around 20 different ionic currents can be divided into depolarizing and repolarizing currents involved in the generation of the cardiac action potential. The rapid depolarizing of the cell membrane at the beginning of the cardiac action potential is due to the activation of voltage-dependent sodium Nav 1.5 channels..

1.2 The Long OT Syndrome 3

Mutations in the SCNA5 gene result in persistent depolarizing current throughout action potential duration causing the Long QT Syndrome 3 phenotype.

1.3 B'SYS' CHO Nav 1.5 Duo cells

B'SYS has designed a CHO Nav 1.5 -Duo cell line with constitutive coexpression of human Nav 1.5 sodium channels. The human Nav 1.5 cDNA was cloned and transfected twice (two different vectors) into CHO cells and then the functional properties of the Nav 1.5 channels suitable for manual and automated patch-clamping (cells were validated on Sophion Q-Patch ${ }^{\text {TM }}$ and Sophion Oube ${ }^{\mathrm{TM}}$).

2 PRODUCT SHIPMENT

2.1 Product Format

CHO cells stably transfected with recombinant human Nav 1.5 channel:

- $1 \times 0.5 \mathrm{~mL}$ aliquots of frozen cells at $1.2 \mathrm{E}+06$ cells $/ \mathrm{mL}$
- Cells are frozen in complete medium with 10% DMSO

2.2 Mycoplasma Certificate

B'SYS periodically tests cells for presence of mycoplasma by means of highly sensitive PCR based assays. All delivered cells are free of mycoplasma.

3 VALIDATION OF CHO NAV1.5-DUO CELLS

3.1 Manual Patch-clamp

B'SYS CHO Nav 1.5 -Duo cell line was designed to increase current amplitudes and expression for more passages. A depolarization from -120 mV to 0 mV resulted in a peak current amplitude of $9.8 \mathrm{nA}(\mathrm{n}=50)$. The current amplitude was stable for over 30 passages. Biophysical parameters are comparable with the B'SYS CHO Nav 1.5 cell line.

Fig. 1: Biophysical Characterization of stably transfected CHO Nav1.5 cells. A) representative current recording. Cells were stimulated by the voltage protocol shown in b). C) IV curve if the Nav1.5 channel. Peak current were measured at the beginning of the voltage pulse ($n=11$). D) Inactivation curve of the Nav 1.5 channel. The current amplitudes were measured at the beginning of the tail current. Data were fit by a Boltzmann equation. The $\mathrm{V}_{0.5}$ value was $65.83 \pm 0.88 \mathrm{mV}$ ($\mathrm{n}=11$). No currents were recorded in untransfected cells (data not shown).

Fig. 2: Dose response curves for Propafenone and Quinidine at stimulation frequencies of 1 and 3 Hz .
The results can be summarized as follows.

Application / stimulation frequency	$I \mathrm{C}_{50}$ value $(\mu \mathrm{M})$	Hill coefficient
Propafenone $/ 1 \mathrm{~Hz}$	1.55	1.19
Propafenone $/ 3 \mathrm{~Hz}$	0.80	1.15
Quinidine $/ 1 \mathrm{~Hz}$	13.64	1.02
Quinidine $/ 3 \mathrm{~Hz}$	14.15	1.48

The observed inhibition of Nav1.5 inward peak currents by Propafenone and Quinidine are in line with its known pharmacological profile (Persson et al. 2005, Harmer et al. 2008)

3.2 Automated Patch-clamp

The CHO Navv 1.5-Duo cell line was validated on the automated patch-clamp system 0-Patch 16.
The bath solution contained (in mM) $\mathrm{NaCl} 137 \mathrm{mM} \mathrm{KCl} 4 \mathrm{mM}, \mathrm{CaCl}_{2} 1.8 \mathrm{mM}, \mathrm{MgCl}_{2} 1 \mathrm{mM}$, HEPES 10 mM , D-Glucose 10 mM , pH (NaOH) 7.4. The intracellular solution consisted of (in mM) CsF $135 \mathrm{mM}, \mathrm{NaCl} 10 \mathrm{mM}$, HEPES 10 mM , EGTA $5 \mathrm{mM}, \mathrm{pH}(\mathrm{CsOH}) 7.3$.
To analyze the effect of the tested compound in the resting, fast and slow inactivated state the following voltage protocol was applied to the cells in the whole cell configuration.

The cells were clamped at a holding potential of -110 mV . To test the channels in the resting state a first test pulse to 0 mV was applied (10 ms). Then the cells were clamped to -70 mV for 2 s followed by the second test pulse to 0 mV (10 ms duration). This test pulse results in the current values for the fast inactivated sodium channels. For the slow inactivation, channels were depolarized to 0 mV for a duration of 5 s . To recover the fast inactivated channels the cells were depolarized to -110 mV for 100 ms , followed by the third test pulse for the slow inactivated channels ($0 \mathrm{mV}, 10 \mathrm{~ms}$). This voltage protocol was applied three times for each test concentration, after an incubation time of 90 s .

Fig. 1: Representative recordings of test pulses $(0 \mathrm{mV})$ for the resting (A), fast (B) and slow (C) inactivated state at Lidocaine concentrations of $0.03,0.3$ and 3.0 mM
The effect of three Lidocaine concentrations on Nav1.5 currents in the resting, fast and slow inactivated state was analyzed. Representative current recordings of the test pulses in the resting, fast and slow inactivated state are shown in Fig. 1.
The dose response curves of each state were generated and the IC_{50} values and the Hill coefficients were calculated.

Lidocaine blocks different $\mathrm{Na}_{\mathrm{v}} 1.5$ states

	resting	fast inactivated	slow inactivated
HillSlope	-1.190	-0.9866	-1.285
EC5 [mM]	1.646	0.2399	1.413

Fig. 2: Dose response curves for Lidocaine for the resting, fast and slow inactivated state.

Additionally, the effects of four Terfenadine concentrations were analyzed on Nav 1.5 currents in the three states. Representative current recordings of the test pulses and the corresponding dose response curves in the resting, fast and slow inactivated state are shown in Fig. 3.

Fig. 3: Dose response curves for Terfenadine for the resting, fast and slow inactivated state.
The dose response curves of the four concentrations of Terfenadine generated the following I_{50} values.

Application / stimulation frequency	$\mathrm{I} \mathrm{C}_{50}$ value $(\mu \mathrm{M})$	Hill coefficient
Resting 3rd	5.5	1.5
Fast inactivated	3.7	1.2
Slow inactivated	2.7	1.8

A change in the kinetic of the channel in all three states was analyzed by application of Anthopleurin C.

Fig. 4: Representative recordings of test pulses $(0 \mathrm{mV})$ for the resting (A), fast (B) and slow (C) inactivated state at an Anthopleurin C concentration of 1 nM .
Anthopleurin C increased the time course of inactivation resulting in increased current amplitudes at the end of the test pulse.

4 CELL CULTURE CONDTIONS

4.1 General

CHO Nav 1.5 -Duo cells are incubated at $37^{\circ} \mathrm{C}$ in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$ (rel. humidity $>95 \%$). The cells are continuously maintained and passaged in sterile culture flasks containing F12 (HAM) medium supplemented with 9% fetal bovine serum, 0.9% Penicillin/Streptomycin solution and $250 \mu \mathrm{~g} / \mathrm{mL}$ G-418 sulphate and $1 \mu \mathrm{~g} / \mathrm{mL}$ Puromycine. The CHO Nav 1.5 cells are passaged at a confluence of about 80%. For manual electrophysiological measurements the cells are seeded onto e.g. 35 mm sterile culture dishes containing complete medium.

- All solutions and equipment coming in contact with the cells must be sterile.
- Use proper sterile technique and work in a laminar flow hood.
- Be sure to have frozen cell stocks at hand before starting experiments.
- Cells should be split every $2-3$ days at $70 \%-80 \%$ confluency at 1:3 to 1:5 ratio.

4.2 Recommended Complete Medium

- F12 (HAM) with L-Glutamine or GlutaMAX I
- 9% FBS
- 0.9% Penicillin/Streptomycin

4.3 Antibiotics

- CHO Nav 1.5 -Duo clones were selected under $500 \mu \mathrm{~g} / \mathrm{mL} \mathrm{G-418}$ sulphate and $2 \mu \mathrm{~g} / \mathrm{mL}$ Puromycine antibiotic pressure.
- To cultivate CHO Nav1.5-Duo cells, also a reduced antibiotic pressure ($250 \mu \mathrm{~g} / \mathrm{mL}$ G-418 sulphate and $1 \mu \mathrm{~g} / \mathrm{mL}$ Puromycine) can be used.
Remark: The permanent application of high antibiotic pressure has no effect on current density.

4.4 Thawing Cells

- Remove vial of cells from liquid nitrogen and thaw quickly at $37^{\circ} \mathrm{C}$.
- Decontaminate outside of vial with 70% ethanol.
- Transfer cells to a T-75 culture flask containing 10 mL complete medium.
- Incubate cells at $37^{\circ} \mathrm{C}$ for $4-6 \mathrm{~h}$ to allow the cells to attach to the bottom of flask.
- Aspirate off the medium and replace with 10 mL complete medium \& antibiotics.
- Antibiotics: $250 \mu \mathrm{~g} / \mathrm{mL}$ G-418 sulphate and $1 \mu \mathrm{~g} / \mathrm{mL}$ Puromycine
- Incubate cells and check them daily until $70 \%-80 \%$ confluency is reached.

4.5 Splitting Cells

- When cells are 70\%-80\% confluent remove medium.
- Wash cells once with $1 \times$ PBS to remove excess medium.
- Add $1 \times$ Trypsin/EDTA and incubate 30 s at room temperature.
- Remove Trypsin/EDTA quickly and incubate cells for 2 min at $37^{\circ} \mathrm{C}$.
- Detach cells, add complete medium and pipet up and down to break clumps of cells.
- Passage cells into new flask with complete medium and antibiotics at 1:3 to 1:5 ratio.
- Use remaining suspension for counting the cells.

4.6 Freezing Medium

- Mix 0.9 mL fresh complete medium and 0.1 mL DMSO for every 1 mL freezing medium.
- Sterilize freezing medium by means of appropriate micro filter ($0.1 \mu \mathrm{~m}-0.2 \mu \mathrm{~m})$.

4.7 Freezing Cells

- Prepare fresh freezing medium and keep it on ice.
- Cells should have 80% - 90% confluency prior to freezing.
- Remove the complete medium.
- Wash cells once with $1 x$ PBS to remove excess medium.
- Add $1 x$ Trypsin/EDTA and incubate 30 sec at room temperature.
- Remove Trypsin/EDTA quickly and incubate cells for 2 min at $37^{\circ} \mathrm{C}$.
- Detach cells, add complete medium and pipet up and down to break clumps of cells.
- Pellet cells with centrifuge and carefully aspirate off medium.
- Resuspend cells at a density of approximately $2.0 \mathrm{E}+06$ cells per mL with fresh freezing medium.
- Aliquot 0.5 mL of cell suspension into each cryovial.
- Overnight incubate cells in a styropor box at $-80^{\circ} \mathrm{C}$.
- The next morning transfer cryovial in liquid nitrogen tank for long-term storage.

5.1 Human Nav1.5 Accession Number NM_000335

Cloned cDNA sequence of human Nav1 1.5 subunit was error-free and identical with NM_000335 sequence:
atggcaaacttcctattacctcggggcaccagcagcttccgcaggttcacacgggagtccctggcagccatcgagaag
 cgcatggcagagaagcaagcccgcggctcaaccaccttgcaggagagccgagaggggctgcccgaggaggaggctccc
 cggccccagctggacctgcaggcctccaaaaagctgccagatctctatggcaatccaccccaagagctcatcggagag
 cccctggaggacctggaccccttctatagcacccaaaagactttcatcgtactgaataaaggcaagaccatcttccgg $\begin{array}{lllllllllllllllllllllllllll}\mathrm{P} & \mathrm{L} & \mathrm{E} & \mathrm{D} & \mathrm{L} & \mathrm{D} & \mathrm{P} & \mathrm{F} & \mathrm{Y} & \mathrm{S} & \mathrm{T} & \mathrm{Q} & \mathrm{K} & \mathrm{T} & \mathrm{F} & \mathrm{I} & \mathrm{V} & \mathrm{L} & \mathrm{N} & \mathrm{K} & \mathrm{G} & \mathrm{K} & \mathrm{T} & \mathrm{I} & \mathrm{F} & \mathrm{R}\end{array}$ ttcagtgccaccaacgccttgtatgtcctcagtcccttccaccccatccggagagcggctgtgaagattctggttcac
 tcgctcttcaacatgctcatcatgtgcaccatcctcaccaactgcgtgttcatggcccagcacgaccctccaccctgg
 accaagtatgtcgagtacaccttcaccgccatttacacctttgagtctctggtcaagattctggctcgaggcttctgc
 ctgcacgcgttcactttccttcgggacccatggaactggctggactttagtgtgattatcatggcatacacaactgaa
 tttgtggacctgggcaatgtctcagccttacgcaccttccgagtcctccgggccctgaaaactatatcagtcatttca
 gggctgaagaccatcgtgggggccctgatccagtctgtgaagaagctggctgatgtgatggtcctcacagtcttctgc
 ctcagcgtctttgccctcatcggcctgcagctcttcatgggcaacctaaggcacaagtgcgtgcgcaacttcacagcg
 ctcaacggcaccaacggctccgtggaggccgacggcttggtctgggaatccctggacctttacctcagtgatccagaa
 aattacctgctcaagaacggcacctctgatgtgttactgtgtgggaacagctctgacgctgggacatgtccggagggc $\begin{array}{llllllllllllllllllllllllll}\mathrm{N} & \mathrm{Y} & \mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{N} & \mathrm{G} & \mathrm{T} & \mathrm{S} & \mathrm{D} & \mathrm{V} & \mathrm{L} & \mathrm{L} & \mathrm{C} & \mathrm{G} & \mathrm{N} & \mathrm{S} & \mathrm{S} & \mathrm{D} & \mathrm{A} & \mathrm{G} & \mathrm{T} & \mathrm{C} & \mathrm{P} & \mathrm{E} & \mathrm{G}\end{array}$ taccggtgcctaaaggcaggcgagaaccccgaccacggctacaccagcttcgattcctttgcctgggcctttcttgca
 ctcttccgcctgatgacgcaggactgctgggagcgcctctatcagcagaccctcaggtccgcagggaagatctacatg
 atcttcttcatgcttgtcatcttcctggggtccttctacctggtgaacctgatcctggccgtggtcgcaatggcctat
 gaggagcaaaaccaagccaccatcgctgagaccgaggagaaggaaaagcgcttccaggaggccatggaaatgctcaag
 aaagaacacgaggccctcaccatcaggggtgtggataccgtgtcccgtagctccttggagatgtcccctttggcccca
 gtaaacagccatgagagaagaagcaagaggagaaaacggatgtcttcaggaactgaggagtgtggggaggacaggctc
 cccaagtctgactcagaagatggtcccagagcaatgaatcatctcagcctcacccgtggcctcagcaggacttctatg
 aagccacgttccagccgcgggagcattttcacctttcgcaggcgagacctgggttctgaagcagattttgcagatgat
 gaaaacagcacagcgggggagagcgagagccaccacacatcactgctggtgccctggcccctgcgccggaccagtgcc
 cagggacagcccagtcccggaacctcggctcctggccacgccctccatggcaaaaagaacagcactgtggactgcaat
 ggggtggtctcattactgggggcaggcgacccagaggccacatccccaggaagccacctcctccgccctgtgatgcta
 gagcacccgccagacacgaccacgccatcggaggagccaggcgggccccagatgctgacctcccaggctccgtgtgta
 atggcttcgaggagccaggagcacggcagcgggccctcagcgcagtcagcgtcctcaccagcgcactggaagagtta
 gaggagtctcgccacaagtgtccaccatgctggaaccotctcgcccagcgctacctgatctgggagtgctgcccgctg
 tggatgtccatcaagcagggagtgaagttggtggtcatggacccgtttactgacctcaccatcactatgtgcatcgta
 ctcaacacactcttcatggcgctggagcactacaacatgacaagtgaattcgaggagatgctgcaggtcggaaacctg
 gtcttcacagggattttcacagcagagatgaccttcaagatcattgccctcgacccctactactacttccaacagggc
 tggaacatcttcgacagcatcatcgtcatccttagcctcatggagctgggcetgtcccgcatgagcaacttgtcggtg
 ctgcgctccttccgcctgctgcgggtcttcaagctggccaaatcatggcccaccctgaacacactcatcaagatcatc
 gggaactcagtgggggcactggggaacctgacactggtgctagccatcatcgtgttcatctttgctgtggtgggcatg
 cagctctttggcaagaactactcggagctgagggacagcgactcaggcctgctgcctcgctggcacatgatggacttc
 tttcatgccttcctcatcatcttccgcatcctctgtggagagtggatcgagaccatgtgggactgcatggaggtgtcg
 gggcagtcattatgcctgctggtcttcttgcttgttatggtcattggcaaccttgtggtcctgaatctcttcctggcc
 ttgctgctcagctccttcagtgcagacaacctcacagcccctgatgaggacagagagatgaacaacctccagctggcc
 ctggccegcatccagaggggcetgcgctttgtcaagcggaccacctgggatttctgctgtggtctcctgcggcagcgg
 cctcagaagcecgcagcccttgccgcccagggccagctgcccagctgcattgccaccccetactccccgccaccccca
 gagacggagaaggtgcctcccacccgcaaggaaacacggtttgaggaaggcgagcaaccaggccagggcacccccggg $\begin{array}{lllllllllllllllllllllllllll}\mathrm{E} & \mathrm{T} & \mathrm{E} & \mathrm{K} & \mathrm{V} & \mathrm{P} & \mathrm{P} & \mathrm{T} & \mathrm{R} & \mathrm{K} & \mathrm{E} & \mathrm{T} & \mathrm{R} & \mathrm{F} & \mathrm{E} & \mathrm{E} & \mathrm{G} & \mathrm{E} & \mathrm{Q} & \mathrm{P} & \mathrm{G} & \mathrm{Q} & \mathrm{G} & \mathrm{T} & \mathrm{P} & \mathrm{G}\end{array}$ gatccagagcccgtgtgtgtgcccatcgctgtggccgagtcagacacagatgaccaagaagaagatgaggagaacagc
 ctgggcacggaggaggagtccagcaagcaggaatcccagcctgtgtccggtggcccagaggcccctccggattccagg $\begin{array}{lllllllllllllllllllllllllll}\mathrm{L} & \mathrm{G} & \mathrm{T} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{S} & \mathrm{S} & \mathrm{K} & \mathrm{Q} & \mathrm{E} & \mathrm{S} & \mathrm{Q} & \mathrm{P} & \mathrm{V} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{P} & \mathrm{E} & \mathrm{A} & \mathrm{P} & \mathrm{P} & \mathrm{D} & \mathrm{S} & \mathrm{R}\end{array}$ acctggagccaggtgtcagcgactgcctcctctgaggccgaggccagtgcatctcaggccgactggcggcagcagtgg
 aaagcggaaccccaggceccagggtgcggtgagaccccagaggacagttgctccgagggcagcacagcagacatgacc
 aacaccgctgagctcctggagcagatccctgacctcggccaggatgtcaaggacccagaggactgcttcactgaaggc
 tgtgtccggcgctgtccctgctgtgcggtggacaccacacaggccccagggaaggtctggtggcggttgcgcaagacc
 tgctaccacatcgtggagcacagctggttcgagacattcatcatcttcatgatcctactcagcagtggagcgctggcc
 ttcgaggacatctacctagaggagcggaagaccatcaaggttctgcttgagtatgccgacaagatgttcacatatgtc
 ttcgtgctggagatgctgctcaagtgggtggcctacggcttcaagaagtacttcaccaatgcctggtgctggctcgac
 ttcctcatcgtagacgtctctctggtcagcctggtggccaacaccctgggctttgccgagatgggccccatcaagtca
 ctgcggacgctgcgtgcactccgtcctctgagagctctgtcacgatttgagggcatgagggtggtggtcaatgccctg
 gtgggcgccatcccgtccatcatgaacgtcctcctcgtctgcctcatcttctggctcatcttcagcatcatgggcgtg
 aacctctttgcggggaagtttgggaggtgcatcaaccagacagagggagacttgcctttgaactacaccatcgtgaac
 aacaagagccagtgtgagtccttgaacttgaccggagaattgtactggaccaaggtgaaagtcaactttgacaacgtg
 ggggccgggtacctggcccttctgcaggtggcaacatttaaaggctggatggacattatgtatgcagctgtggactcc

CHO Nav 1.5 Duo Cells
Page 14
 agggggtatgaagagcagcctcagtgggaatacaacctctacatgtacatctattttgtcattttcatcatctttggg
$\begin{array}{llllllllllllllllllllllllll}R & G & Y & E & E & Q & P & Q & W & E & Y & N & L & Y & M & Y & I & Y & F & V & I & F & I & I & F & G\end{array}$ tctttcttcaccctgaacctctttattggtgtcatcattgacaacttcaaccaacagaagaaaaagttagggggccag
 gacatcttcatgacagaggagcagaagaagtactacaatgccatgaagaagctgggctccaagaagccccagaagccc
 atcccacggcccctgaacaagtaccagggcttcatattcgacattgtgaccaagcaggcctttgacgtcaccatcatg
 tttctgatctgcttgaatatggtgaccatgatggtggagacagatgaccaaagtcctgagaaaatcaacatcttggcc
 aagatcaacctgctctttgtggccatcttcacaggcgagtgtattgtcaagctggctgccctgcgccactactacttc
 accaacagctggaatatcttcgacttcgtggttgtcatcctctccatcgtgggcactgtgctctcggacatcatccag
 aagtacttcttctccccgacgctcttccgagtcatccgcctggcccgaataggccgcatcctcagactgatccgaggg
 gccaaggggatccgcacgctgctctttgccctcatgatgtccctgcctgccctcttcaacatcgggctgctgctcttc
 ctcgtcatgttcatctactccatctttggcatggccaacttcgcttatgtcaagtgggaggctggcatcgacgacatg
 Ttcaacttccagaccttcgccaacagcatgctgtgcctcttccagatcaccacgtcggccggctgggatggcctcctc
 agccccatcctcaacactgggccgccctactgcgaccccactctgcccaacagcaatggctctcggggggactgcggg
 aGcccagccgtgggcatcctcttcttcaccacctacatcatcatctccttcctcatcgtggtcaacatgtacattgcc
 aTcatcctggagaacttcagcgtggccacggaggagagcaccgagcccctgagtgaggacgacttcgatatgttctat
 gagatctgggagaaatttgacccagaggccactcagtttattgagtattcggtcctgtctgactttgccgatgccctg
 tctgagccactccgtatcgccaagcccaaccagataagcctcatcaacatggacctgcccatggtgagtggggaccgc
 atccattgcatggacattctctttgccttcaccaaaagggtcctgggggagtctggggagatggacgccctgaagatc
 cagatggaggagaagttcatggcagccaacccatccaagatctcctacgagcccatcaccaccacactccggcgcaag $\begin{array}{lllllllllllllllllllllllllll}\text { Q } & \mathrm{M} & \mathrm{E} & \mathrm{E} & \mathrm{K} & \mathrm{F} & \mathrm{M} & \mathrm{A} & \mathrm{A} & \mathrm{N} & \mathrm{P} & \mathrm{S} & \mathrm{K} & \mathrm{I} & \mathrm{S} & \mathrm{Y} & \mathrm{E} & \mathrm{P} & \mathrm{I} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{L} & \mathrm{R} & \mathrm{R} & \mathrm{K}\end{array}$ cacgaagaggtgtcggccatggttatccagagagccttccgcaggcacctgctgcaacgctctttgaagcatgcctcc
 ttcctcttccgtcagcaggcgggcagcggcctctccgaagaggatgcccctgagcgagagggcctcatcgcctacgtg
 atgagtgagaacttctcccgaccccttggcccaccctccagctcctccatctcctccacttccttcccaccetcctat
 gacagtgtcactagagccaccagcgataacctccaggtgcgggggtctgactacagccacagtgaagatctcgccgac
 ttcccccettctccggacagggaccogtgagtccatcgtgtga

$$
\begin{array}{lllllllllllllll}
F & P & P & S & P & D & R & D & R & E & S & I & V & -
\end{array}
$$

6 CONTACT INFORMATION

6.1 Contact Address for Technical Support \& Ordering Information

- B'SYS GmbH

Technology Center Witterswil
Benkenstrasse 254
4108 Witterswil
Switzerland
Tel: +41 617217744
Fax: +41 617217741
Email: info@bsys.ch
Web: www.bsys.ch

