

B'SYS GmbH CHO K_V7.2/3 Cell Line

Specification Sheet © B'SYS GmbH

TABLE OF CONTENTS

1.	BAC	KGROUND	. 3
1. ⁻ 1.2		The neuronal M-current	
2.	PRC	DDUCT SHIPMENT	. 4
2. ² 2.2		Product Format Mycoplasma Certificate	
3.	VAL	IDATION OF CHO $K_V 7.2$ AND $K_V 7.2/7.3$. 5
3. ⁻ 3.2		Electrophysiology Positive Control XE-991	
4.	HET	EROMERIC K _v 7.2/7.3	. 7
4. 4. 4.	2.	Current amplitudes of Homo- and Heteromers Positive control: TEA Potassium channel activator: Retigabine	. 7
5.	CEL	L CULTURE CONDITIONS	. 9
5.2 5.2 5.4 5.4 5.4 5.4 5.4	2. 3. 4. 5. 6. 7.	General Recommended Complete Medium Antibiotics Thawing Cells Splitting Cells Freezing Medium Freezing Cells Stability of CHO K _v 7.2 and K _v 7.2/7.3 cells	.9 .9 .9 10 10
6 .	SEC	2UENCES	11
6. ⁻ 6.2		Human K_v 7.2 Accession Number NM172107.21 Human K_v 7.3 Accession Number NM0012048241	
7.	CO	NTACT INFORMATION 1	11

1. BACKGROUND

1.1. The neuronal M-current

 $K_v7.2$ and $K_v7.3$ are voltage-gated potassium (K+) channels, belonging to the subfamily of $K_v7.x$. They are encoded by *KCNQ2* and *KCNQ3* genes respectively; and co-assemble together to form an M-type homomeric or heteromeric K_v channel. These channels, having the properties of the native M-current, is a slowly activating and deactivating (delayed rectifier) K+ channel that regulates synaptic plasticity and neuronal excitability by causing delayed membrane hyperpolarization.

 $K_v7.2$ and 7.3 are found in hippocampus, cortex, thalamus, cerebellum and brain stem. Further they are found in nodes of Ranvier, sympathetic and dorsal root ganglia. Loss of function mutations in *KCNQ* genes can cause repeated neuronal discharges and is associated with rare hereditary human epilepsy called benign familial neonatal convulsions (BFNC). Furthermore, *KCNQ* genes are expressed in sensory neurons and are therefore also involved in nociceptive signaling.

 $K_v7.2/7.3$ inhibitors are developed for the treatment of learning and memory disorders; whereas $K_v7.2/7.3$ activators for the treatment of epilepsy and pain.

1.2. B'SYS CHO K_v 7.2 and CHO K_v 7.2/7.3 Cells

As a new test system B'SYS has designed a CHO $K_V7.2$ cell line with constitutive expression of $K_V7.2$ channels. The $K_V7.2$ cDNA was cloned and transfected into CHO cells and then the functional properties of the $K_V7.2$ channels validated by means of the patch-clamp technique.

The K_v7.2 and K_v7.3 cDNAs were cloned in the same bidirectional expression vector and were transfected on CHO cells. Their functional properties are also validated by the means of the manual patch-clamp technique.

Page 4

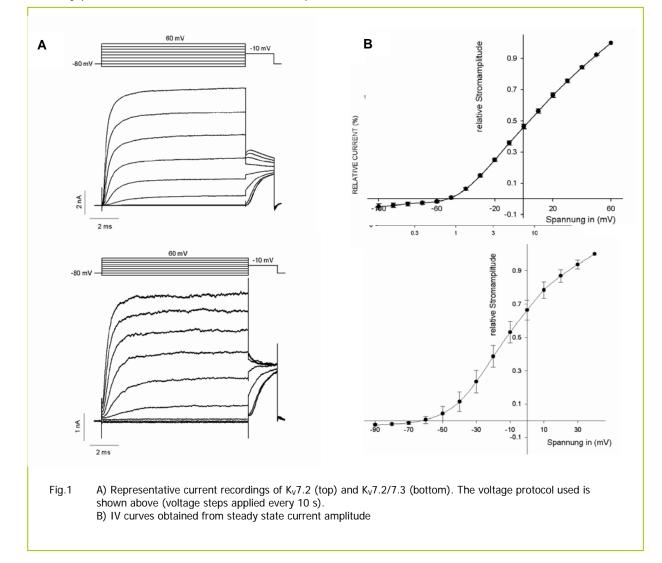
2. PRODUCT SHIPMENT

2.1. Product Format

CHO cells stably transfected with recombinant human $K_V7.2$ or $K_v7.2/7.3$ ion channel:

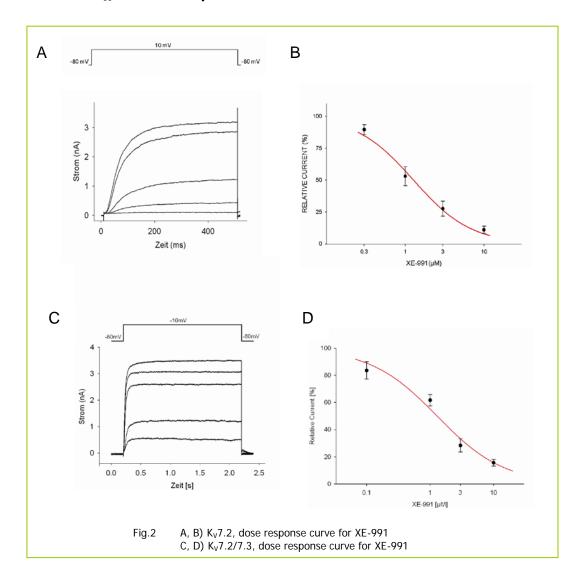
- 1 x 0.8 ml aliquots of frozen cells at 2.3 E+06 cells/mL
- Cells are frozen in complete medium with 10 % DMSO

2.2. Mycoplasma Certificate

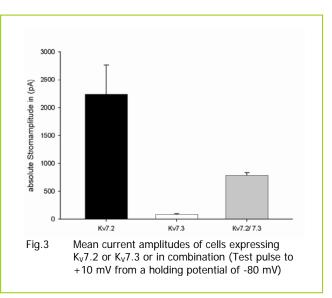

B'SYS periodically tests cells for presence of mycoplasma by means of highly sensitive PCR based assays. All delivered cells are free of mycoplasma.

3. VALIDATION OF CHO $K_V7.2$ AND $K_V7.2/7.3$

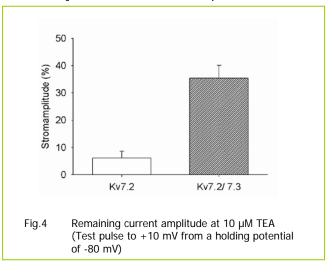
3.1. Electrophysiology


 $K_V7.2$ and $K_V7.2/7.3$ currents were measured by means of the patch-clamp technique in the perforated-patch configuration. Access to cells was established with Amphotericin B which perforates the patched membrane. The bath solution contained (in mM) Potassium Chloride 137, Potassium Chloride 4, Calcium Chloride 1.8, Magnesium Chloride 1, HEPES 10, D-Glucose 10, pH (NaOH) 7.4. The pipette solution consisted of (in mM) Potassium Chloride 1, Mg-ATP 5, HEPES 10, EGTA 5, Amphotericin B (0.5 mg/mL), pH (KOH) 7.2. After formation of a G Ω seal between the patch electrodes and individual $K_V7.2$ or $K_V7.2/7.3$ stably transfected CHO cells, the cell membrane was perforated within 5 minutes. Improvement of electrical access to the cell interior was monitored until series resistance was stable. All solutions applied to cells were continuously perfused and maintained at room temperature.

3.2. Positive Control XE-991

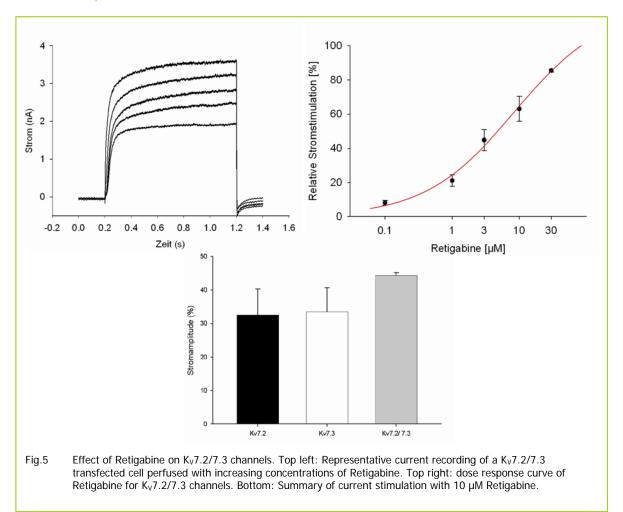

XE-991, which is known a K_V blocker, was used as positive control to validate the pharmacological profile of the CHO cells. The effect of XE-991 was first measured at 10 μ M, which blocked K_V7.2 currents almost completely (10.97 ± 3.06% relative current amplitude, mean ± SEM of 5 cells). When the cells were exposed to 0.3, 1.0, 3.0 and 10 μ M XE-991, the steady-state level relative current amplitudes revealed values of 89.46 ± 3.88%, 52.93 ± 7.41%, 27.53 ± 5.96 and 10.97 ± 3.06%, respectively (mean ± SEM of 5 cells). The inhibition curve (Fig. 2B) was best fitted with an IC₅₀ value of **1.27 \muM**. Similarly, for the heteromeric K_V7.2/7.3 currents were blocked by XE-991. When the cells were exposed to 0.1, 1.0, 3.0 and 10 μ M XE-991, the steady-state level relative current amplitudes revealed values of **1.27 \muM**. Similarly, for the heteromeric K_V7.2/7.3 currents were blocked by XE-991. When the cells were exposed to 0.1, 1.0, 3.0 and 10 μ M XE-991, the steady-state level relative current amplitudes revealed values of 83.64 ± 6.43%, 61.74 ± 4.21%, 28.38 ± 4.87 and 15.62 ± 2.41%, respectively (mean ± SEM of 5 cells). The inhibition curve (Fig. 2D) was best fitted with an IC₅₀ value of **1.29 \muM**.

4. HETEROMERIC $K_v 7.2/7.3$


4.1. Current amplitudes of Homo- and Heteromers

For $K_V 7.2/7.3$ heteromeric channels, the current amplitude was strongly reduced in comparison to $K_V 7.2$ channels, but still larger than the current amplitude that was observed in cells that were expressing with $K_V 7.3$ only.

4.2. Positive control: TEA


 $K_V7.2$ currents could be blocked by 10 μ M TEA. The remaining current amplitude was 8%. Cells transfected with $K_V7.2$ / 7.3 were less sensitive, only 65% of the current amplitude was blocked.

4.3. Potassium channel activator: Retigabine

Retigabine is a novel anti-convulsant known to act as a positive modulator of the heteromer $K_v7.2/7.3$. At a concentration of 10 μ M the current for the $K_v7.2/7.3$ was stimulated by 63%, while the two homomers were only stimulated by 30%. For $K_v7.2/7.3$, the dose response curve was generated and the EC₅₀ value was calculated to be 8.34 μ M.

5. CELL CULTURE CONDITIONS

5.1. General

CHO K_V7.2 and K_V7.2/7.3 cells are incubated at 37°C in a humidified atmosphere with 5% CO₂ (rel. humidity > 95%). The cells are continuously maintained and passaged in sterile culture flasks containing F12 (HAM) medium supplemented with 10% fetal bovine serum, 1% Penicillin/Streptomycin solution and 500 µg/mL Hygromycin (K_V7.2) or 5 µg/mL Puromycin (K_V7.2/7.3) and 100 µg/mL Zeocin. The CHO cells are passaged at a confluence of about 50-80%. For electrophysiological measurements the cells are seeded onto e.g. 35 mm sterile culture dishes containing complete medium.

- All solutions and equipment coming in contact with the cells must be sterile.
- Use proper sterile technique and work in a laminar flow hood.
- Be sure to have frozen cell stocks at hand before starting experiments.
- Cells should be split every 2-3 days at 70% 80% confluency at 1:3 to 1:5 ratio.

5.2. Recommended Complete Medium

- F12 (HAM) with L-Glutamine or GlutaMAX I
- 10% FBS
- 1% Penicillin/Streptomycin

5.3. Antibiotics

- CHO K_v7.2 clones were selected under 1000 µg/mL Hygromycin antibiotic pressure.
- To cultivate CHO K_v 7.2 cells, also a reduced antibiotic pressure (500 μ g/mL) can be used.
- To separate CHO K_V7.2 cells from untransfected cells, use 1000 μg/mL Hygromycin.
- CHO $K_{V}7.2/7.3$ clones were selected under 10 $\mu g/mL$ Puromycin and 100 $\mu g/mL$ Zeocin antibiotic pressure.
- To cultivate CHO $K_V 7.2/7.3$ cells, also a reduced antibiotic pressure (5 μ g/mL Puromycin and 100 μ g/mL Zeocin) can be used.
- To separate CHO $K_{\nu}7.2/7.3$ cells from untransfected cells, use 10 $\mu g/mL$ Puromycin and 100 $\mu g/mL$ Zeocine

•

Remark: The permanent application of high antibiotic pressure has no effect on current density.

5.4. Thawing Cells

- Remove vial of cells from liquid nitrogen and thaw quickly at 37°C.
- Decontaminate outside of vial with 70% ethanol.
- Transfer cells to a T-75 culture flask containing 10 mL complete medium.
- Incubate cells at 37°C for 4-6 h to allow the cells to attach to the bottom of flask.
- Aspirate off the medium and replace with 10 mL complete medium & antibiotics.
- Antibiotics: 500 μ g/mL Hygromycin (K_V7.2); 5 μ g/mL Puromycin and 100 μ g/mL Zeocine (K_V7.2/7.3).
- Incubate cells and check them daily until 70% 80% confluency is reached.

Page 10

5.5. Splitting Cells

- When cells are 70% 80% confluent remove medium.
- Wash cells once with 1x PBS to remove excess medium.
- Add 1x Trypsin/EDTA and incubate 30 s at room temperature.
- Remove Trypsin/EDTA quickly and incubate cells for 2 min at 37°C.
- Detach cells, add complete medium and pipet up and down to break clumps of cells.
- Passage cells into new flask with complete medium and antibiotics at 1:3 to 1:5 ratio.
- Use remaining suspension for counting the cells.

5.6. Freezing Medium

- Mix 0.9 mL fresh complete medium and 0.1 mL DMSO for every 1 mL freezing medium.
- Sterilize freezing medium by means of appropriate micro filter (0.1 μ m 0.2 μ m).

5.7. Freezing Cells

- Prepare fresh freezing medium and keep it on ice.
- Cells should have 80% 90% confluency prior to freezing.
- Remove the complete medium.
- Wash cells once with 1x PBS to remove excess medium.
- Add 1x Trypsin/EDTA and incubate 30 s at room temperature.
- Remove Trypsin/EDTA quickly and incubate cells for 2 min at 37°C.
- Detach cells, add complete medium and pipet up and down to break clumps of cells.
- Pellet cells with centrifuge and carefully aspirate off medium.
- Resuspend cells at a density of approximately 2.0 E+06 cells per mL with fresh freezing medium.
- Aliquot 0.8 mL of cell suspension into each cryovial.
- Overnight incubate cells in a styropor box at -80°C.
- The next morning transfer cryovial in liquid nitrogen tank for long-term storage.

5.8. Stability of CHO K_V 7.2 and K_V 7.2/7.3 cells

CHO $K_V7.2$ and $K_V7.2/7.3$ cells stably express functionally active $K_V7.2$ or $K_V7.2/7.3$ potassium channels over 20 passages. Under recommended cell culture conditions no variation in current density was observed over 20 cell splitting cycles.

Page 11

6. SEQUENCES

Human $K_{\nu}7.2$ Accession Number NP_742105.1 Human $K_{\nu}7.3$ Accession Number NP_004510.1

7. CONTACT INFORMATION

 B'SYS GmbH Technology Center Witterswil Benkenstrasse 254 4108 Witterswil Switzerland

> Tel: +41 61 721 77 44 Fax: +41 61 721 77 41 Email: <u>info@bsys.ch</u> Web: <u>www.bsys.ch</u>

